NOTE ON GENERALIZED JORDAN LEFT CENTRALIZERS

YUNHE CHEN

Department of Mathematics East China University of Science and Technology Shanghai 200237 P. R. China e-mail: heyunchen@hotmail.com

Abstract

Let δ be an additive map from a ring R into an R-bimodule M and $\beta: R \times R \to M$ be a biadditive map satisfying $\beta(x, yz) - \beta(x, y)z - \beta(xy, z) = 0$. We call (δ, β) is a generalized left centralizer (respectively, a generalized Jordan left centralizer), if $\delta(xy) = \delta(x)y + \beta(x, y)$ for all $x, y \in R$ (respectively, $\delta(x^2) = \delta(x)x + \beta(x, x)$ for all $x \in R$). In this paper, we show that every generalized Jordan left centralizer is a generalized left centralizer under certain conditions. In Corollary 3.4, we apply generalized Jordan left centralizers to generalized Jordan derivations on certain rings and operator algebras.

1. Introduction

Let δ be an additive map from a ring *R* into an *R*-bimodule *M* and *x*, *y* be arbitrary elements of *R*. δ is called a *left centralizer* (respectively, *Jordan left centralizer*), if $\delta(xy) = \delta(x)y$ (respectively, $\delta(x^2) = \delta(x)x$). δ is called a *generalized derivation* (respectively,

Keywords and phrases: generalized left centralizer, semiprime ring.

Received March 29, 2011

© 2011 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 16N60, 16W25.

generalized Jordan derivation), if there exists a derivation (respectively, Jordan derivation) $\tau : R \to M$ such that $\delta(xy) = \delta(x)y + x\tau(y)$ (respectively, $\delta(x^2) = \delta(x)x + x\tau(x)$). We denote it by (δ, τ) . Generalized derivations and generalized Jordan derivations were introduced by Bresar [3] and their properties have been discussed in many papers.

Nakajima [9] introduced a new type of generalized derivations and generalized Jordan derivations associate with Hochschild 2-cocycles. A biadditive map $\alpha : R \times R \to M$ is called a *Hochschild 2-cocycle*, if

$$x\alpha(y, z) - \alpha(xy, z) + \alpha(x, yz) - \alpha(x, y)z = 0.$$

$$(1.1)$$

An additive map $\delta : R \to M$ is called a *generalized derivation associate* with Hochschild 2-cocycle, if there exists a 2-cocycle α such that

$$\delta(xy) = \delta(x)y + x\delta(y) + \alpha(x, y), \qquad (1.2)$$

and δ is called a generalized Jordan derivation associate with Hochschild 2-cocycle, if

$$\delta(x^2) = \delta(x)x + x\delta(x) + \alpha(x, x). \tag{1.3}$$

We denote it by (δ, α) .

Motivated by Nakajima's definitions, we will introduce a type of generalized left centralizers and generalized Jordan left centralizers. An additive map $\delta: R \to M$ is called a *generalized left centralizer*, if there exists a biadditive map $\beta: R \times R \to M$ satisfying

$$\beta(x, yz) - \beta(x, y)z - \beta(xy, z) = 0, \qquad (1.4)$$

such that

$$\delta(xy) = \delta(x)y + \beta(x, y), \qquad (1.5)$$

and δ is called a *generalized Jordan left centralizer*, if there exists a biadditive map $\beta : R \times R \to M$ satisfying (1.4) such that

$$\delta(x^2) = \delta(x)x + \beta(x, x). \tag{1.6}$$

We denote it by (δ, β) .

Remark. It is easy to show that (δ, β) is a generalized left centralizer, if and only if (δ, α) is a generalized derivation associate with Hochschild 2-cocycle, where $\alpha(x, y) = \beta(x, y) - x\delta(y)$. One of the problem is whether generalized Jordan left centralizers and generalized Jordan derivations associate with Hochschild 2-cocycles are equivalent. In Corollary 3.2, we obtain some results.

In recent years, there have been a number of papers on the study of derivations, left centralizers, and generalized derivations. Herstein [5, Theorem 3.1] first proved that a Jordan derivation of 2-torsion free prime rings is a derivation and Bresar [2, Theorem 1] extended this result into 2-torsion free semiprime rings. Zalar [11, Proposition 1.4] proved that a Jordan left centralizer of 2-torsion free semiprime rings is a left centralizer. In [1, 6, 10], authors showed that every generalized Jordan derivation on 2-torsion free rings, which have a commutator nonzero divisor, 2-torsion free semiprime rings and nest algebras is a generalized derivation. In [9, Theorem 6], Nakajima showed that every generalized Jordan derivation associate with Hochschild 2-cocycle is a generalized derivation under certain conditions.

In this paper, we show that every generalized Jordan left centralizer is a generalized left centralizer under certain conditions. In Corollary 3.4, we easily show that a generalized Jordan derivation on 2-torsion free semiprime rings, 2-torsion free rings, which have a commutator nonzero divisor, CSL algebras, triangular algebras or a class of reflexive algebras alg \mathcal{L} on a Banach space X satisfying $\lor \{L \in \mathcal{L} : L_{-} < X\} = X$ or $\land \{L_{-} : L \in \mathcal{L}, L > (0)\} = (0)$ is a generalized derivation.

2. Lemmas

In the following, we assume that R is a ring with the center \mathcal{Z} and M is an R-bimodule, unless otherwise stated. To obtain our results, we need the following lemmas:

Lemma 2.1. Let R be a ring and M be a 2-torsion free R-bimodule. If $(\delta, \beta) : R \to M$ is a generalized Jordan left centralizer, then the following hold:

(1)
$$\delta(xy + yx) = \delta(x)y + \delta(y)x + \beta(x, y) + \beta(y, x),$$

- (2) $\delta(xyx) = \delta(x)yx + \beta(x, yx),$
- (3) $\delta(xyz + zyx) = \delta(x)yz + \delta(z)yx + \beta(x, yz) + \beta(z, yx),$

for all $x, y, z \in R$.

Proof. (1) Replacing x by x + y in (1.6), (1) is easily obtained.

(2) Replacing y by xy + yx in (1), we have $\delta(x^2y + xyx + xyx + yx^2)$ $= \delta(x)(xy + yx) + \delta(xy + yx)x + \beta(x, xy + yx) + \beta(xy + yx, x)$ $= \delta(x)xy + \delta(x)yx + \delta(x)yx + \delta(y)x^2 + \beta(x, y)x + \beta(y, x)x$ $+ \beta(x, xy) + \beta(x, yx) + \beta(xy, x) + \beta(yx, x).$

On the other hand,

$$\begin{split} \delta(x^2y + xyx + xyx + yx^2) \\ &= \delta(x)xy + \beta(x, x)y + \delta(y)x^2 + \beta(x^2, y) + \beta(y, x^2) + 2\delta(xyx). \end{split}$$

Hence,

$$2\delta(xyx) = \{\beta(x, xy) - \beta(x, x)y - \beta(x^2, y)\} + \{\beta(y, x)x + \beta(yx, x) - \beta(y, x^2)\} + \{\beta(x, y)x + \beta(x, yx) + \beta(xy, x)\} + 2\delta(x)yx.$$

Since β satisfies (1.4), we have

$$\beta(x, xy) - \beta(x, x)y - \beta(x^2, y) = 0,$$

$$\beta(y, x)x + \beta(yx, x) - \beta(y, x^2) = 0,$$

and

$$\beta(x, yx) = \beta(xy, x) + \beta(x, y)x.$$

64

As *M* is 2-torsion free, we obtain $\delta(xyx) = \delta(x)yx + \beta(x, yx)$.

(3) Replacing x by
$$x + z$$
 in (2) gives (3).

Now for $x, y \in R$, we set

$$F(x, y) = \delta(xy) - \delta(x)y$$
 and $B(x, y) = F(x, y) - \beta(x, y)$.

Then F(x, y) and B(x, y) are biadditive and by Lemma 2.1 (1), we have

$$B(x, y) + B(y, x) = 0.$$
 (2.1)

Lemma 2.2. Let R be a ring and M be a 2-torsion free R-bimodule. If $(\delta, \beta) : R \to M$ is a generalized Jordan left centralizer, then the following hold:

(1) B(x, y)z[x, y] = 0, (2) B(x, y)[x, y] = 0,

for all $x, y, z \in R$.

Proof. (1) By Lemma 2.1 (3),

$$\delta((xy)z(yx) + (yx)z(xy)) = \delta(xy)zyx + \delta(yx)zxy + \beta(xy, zyx) + \beta(yx, zxy)$$
$$= F(x, y)zyx + \delta(x)yzyx + F(y, x)zxy + \delta(y)xzxy$$
$$+ \beta(xy, zyx) + \beta(yx, zxy).$$

On the other hand, by Lemma 2.1 (2),

$$\delta(x(yzy)x + y(xzx)y) = \delta(x)yzyx + \beta(x, yzyx) + \delta(y)xzxy + \beta(y, xzxy).$$

Thus,

$$F(x, y)zyx + F(y, x)zxy + \beta(xy, zyx) + \beta(yx, zxy) = \beta(x, yzyx) + \beta(y, xzxy).$$

(2.2)

Since β satisfies (1.4), we have

 $\beta(x, yzyx) = \beta(x, y)zyx + \beta(xy, zyx)$ and $\beta(y, xzxy) = \beta(y, x)zxy + \beta(yx, zxy)$.

Substituting the above relations in (2.2), we obtain B(x, y)zyx + B(y, x)zxy = 0, which according to (2.1) implies

$$B(x, y)z[x, y] = 0.$$

(2) By Lemma 2.1 (2) and (3),

$$0 = \delta((xy)^{2} + xy^{2}x) - \delta(xy(xy) + (xy)yx)$$

= $\delta(xy)xy + \beta(xy, xy) + \delta(x)y^{2}x + \beta(x, y^{2}x)$
 $-\delta(x)yxy - \delta(xy)yx - \beta(x, yxy) - \beta(xy, yx)$
= $F(x, y)[x, y] + \{\beta(xy, xy) - \beta(x, yxy)\}$
 $+ \{\beta(x, y^{2}x) - \beta(xy, yx)\}.$ (2.3)

Since β satisfies (1.4), we have

$$\beta(xy, xy) - \beta(x, yxy) = -\beta(x, y)xy$$
 and $\beta(x, y^2x) - \beta(xy, yx) = \beta(x, y)yx$.

Substituting the above relations in (2.3), we obtain

$$0 = F(x, y)[x, y] - \beta(x, y)[x, y] = B(x, y)[x, y]. \square$$

The following lemma can been found in [9, Lemma 5].

Lemma 2.3. Let R be a 2-torsion free ring and G_1, G_2 be additive groups. Let $S, T : G_1 \times G_2 \to R$ be biadditive maps. Assume that $S(x_1, x_2)T(x_1, x_2) = 0$ for all $x_i \in G_i$, i = 1, 2. If there exists a nonzero divisor $T(a_1, a_2)$ for some $a_i \in G_i$, i = 1, 2, then $S(x_1, x_2) = 0$ for all $x_i \in G_i$, i = 1, 2.

The following lemmas are useful in dealing with 2-torsion free semiprime rings, which can been found in [11, Lemmas 1.1-1.3].

Lemma 2.4. Let R be a semiprime ring. If $a, b \in R$ are such that axb = 0 for all $x \in R$, then ab = ba = 0.

Lemma 2.5. Let R be a semiprime ring and A, $B : R \times R \to R$ be biadditive mappings. If $A(x, y) \otimes B(x, y) = 0$ for all $x, y, \omega \in R$, then $A(x, y) \otimes B(u, v) = 0$ for all $x, y, \omega, u, v \in R$.

Lemma 2.6. Let R be a semiprime ring with the center \mathcal{Z} and $a \in R$ be some fixed element. If a[x, y] = 0 for all $x, y \in R$, then there exists an ideal \mathcal{U} of R such that $a \in \mathcal{U} \subset \mathcal{Z}$ holds.

3. Generalized Jordan Left Centralizers

The following theorem is our main result:

Theorem 3.1. Let R be a ring and $(\delta, \beta) : R \to R$ be a generalized Jordan left centralizer. If R satisfies one of the following conditions, then (δ, β) is a generalized left centralizer:

(1) R has an identity 1.

(2) *R* is a 2-torsion free ring and there exist $a, b \in R$ such that [a, b] is a nonzero divisor.

(3) R is a 2-torsion free semiprime ring.

Proof. (1) By Lemma 2.1 (1), we obtain

 $\delta(xy + yx) = \delta(x)y + \delta(y)x + \beta(x, y) + \beta(y, x).$

Taking y = 1 in the above equation, we have

$$\delta(x) = \delta(1)x + \beta(x, 1) + \beta(1, x).$$

Since $\beta(x, 1) = 0$ by (1.4), we have

$$\delta(x) = \delta(1)x + \beta(1, x),$$

for all $x \in R$. Hence, for any $x, y \in R$,

$$\delta(xy) = \delta(1)xy + \beta(1, xy).$$

By (1.4), $\beta(1, xy) = \beta(1, x)y + \beta(x, y)$. So

$$\delta(xy) = \delta(x)y + \beta(x, y).$$

(2) By Lemma 2.2 (2), B(x, y)[x, y] = 0 for all $x, y \in R$. Since there exist $a, b \in R$ such that [a, b] is a nonzero divisor and B(x, y) and [x, y] are biadditive maps, then by Lemma 2.3, B(x, y) = 0.

(3) By Lemmas 2.2 (1) and 2.5, we have B(x, y)z[u, v] = 0 for all $x, y, z, u, v \in R$, then by Lemma 2.4, B(x, y)[u, v] = 0 for all $x, y, u, v \in R$. Now, fix some $x, y \in R$ and write B instead of B(x, y) to simplify further writing. Our goal is to prove B = 0. By Lemma 2.6, there exists an ideal \mathcal{U} of R such that $B \in \mathcal{U} \subset \mathcal{Z}$. Since \mathcal{U} is an ideal, $bB, Bb \in \mathcal{Z}$ for all $b \in R$. This gives us

$$xB^2y = xyB^2 = yB^2x$$
 and $xyB^2 = xByB$.

By Lemma 2.1 (1),

$$2\delta(x(B^{2}y) + (B^{2}y)x)$$

$$= 2\delta(x)B^{2}y + 2\delta(B^{2}y)x + 2\beta(x, B^{2}y) + 2\beta(B^{2}y, x)$$

$$= 2\delta(x)B^{2}y + \delta(B^{2}y + yB^{2})x + 2\beta(x, B^{2}y) + 2\beta(B^{2}y, x)$$

$$= 2\delta(x)B^{2}y + \delta(B)Byx + \beta(B, B)yx + \delta(y)B^{2}x + \beta(B^{2}, y)x$$

$$+ \beta(y, B^{2})x + 2\beta(x, B^{2}y) + 2\beta(B^{2}y, x).$$
(3.1)

Since β satisfies (1.4), we have for any $u, v \in R$,

$$\beta(B, B)v + \beta(B^2, v) = \beta(B, Bv),$$
(3.2)

$$\beta(u, B^2 v) = \beta(u, vB^2) = \beta(u, v)B^2 + \beta(uv, B^2), \qquad (3.3)$$

$$\beta(B^2v, u) = \beta(v, B^2u) - \beta(v, B^2)u = \beta(v, u)B^2 + \beta(vu, B^2) - \beta(v, B^2)u.$$
(3.4)

Hence by (3.1)-(3.4), we have

$$2\delta(xB^{2}y + B^{2}yx)$$

= $2\delta(x)B^{2}y + \delta(B)Byx + \delta(y)B^{2}x + \beta(B, By)x + 2\beta(x, y)B^{2}$
+ $2\beta(xy, B^{2}) + 2\beta(y, x)B^{2} + 2\beta(yx, B^{2}) - \beta(y, B^{2})x.$ (3.5)

Similar to the proof of (3.5), we also have

$$2\delta(yB^{2}x + B^{2}xy)$$

= $2\delta(y)B^{2}x + \delta(B)Bxy + \delta(x)B^{2}y + \beta(B, Bx)y + 2\beta(y, x)B^{2}$
+ $2\beta(yx, B^{2}) + 2\beta(x, y)B^{2} + 2\beta(xy, B^{2}) - \beta(x, B^{2})y.$ (3.6)

Hence by (3.5) and (3.6), it follows that

$$\delta(y)B^{2}x = \delta(x)B^{2}y + \beta(B, By)x - \beta(y, B^{2})x - \beta(B, Bx)y + \beta(x, B^{2})y.$$
(3.7)

On the other hand, by Lemma 2.1 (1),

$$\begin{aligned} 4\delta(xyB^2) &= 2\delta(xyB^2 + B^2xy) = 2\delta(xy)B^2 + 2\delta(B^2)xy + 2\beta(xy, B^2) + 2\beta(B^2, xy) \\ &= 2\delta(xy)B^2 + 2\delta(B)Bxy + 2\beta(B, B)xy + 2\beta(xy, B^2) + 2\beta(B^2, xy), \end{aligned}$$

then by (3.2) and (3.3), we have

$$4\delta(xyB^2) = 2\delta(xy)B^2 + 2\delta(B)Bxy + 2\beta(B, Bxy) + 2\beta(x, yB^2) - 2\beta(x, y)B^2.$$
(3.8)

By Lemma 2.1 (1) again, we have

$$4\delta(xByB) = 2\delta(xByB + yBxB)$$

= $2\delta(xB)yB + 2\delta(yB)xB + 2\beta(xB, yB) + 2\beta(yB, xB)$
= $\delta(xB + Bx)By + \delta(yB + By)Bx + 2\beta(Bx, By) + 2\beta(By, Bx)$
= $\delta(x)B^2y + \delta(B)Bxy + \beta(x, B)By + \beta(B, x)By$
+ $\delta(y)B^2x + \delta(B)Bxy + \beta(y, B)Bx + \beta(B, y)Bx$

$$+2\beta(Bx, By) + 2\beta(By, Bx).$$
 (3.9)

Since for any $u, v \in R$,

$$\beta(u, B)v + \beta(B, u)v = \beta(u, Bv) - \beta(uB, v) + \beta(B, uv) - \beta(Bu, v)$$

= $\beta(u, Bv) + \beta(B, uv) - 2\beta(Bu, v).$ (3.10)

So by (3.9) and (3.10), we obtain

$$4\delta(xByB) = \delta(x)B^{2}y + \delta(y)B^{2}x + 2\delta(B)Bxy + \beta(x, B^{2}y) + \beta(y, B^{2}x) + 2\beta(B, Bxy).$$
(3.11)

Hence by (3.7), (3.8), and (3.11), we have

$$2\delta(xy)B^{2} - 2\beta(x, y)B^{2} - 2\delta(x)yB^{2}$$

= $\beta(y, B^{2}x) + \beta(B, By)x - \beta(y, B^{2})x$
 $-\beta(B, Bx)y + \beta(x, B^{2})y - \beta(x, yB^{2}).$ (3.12)

Since β satisfies (1.4), it follows that

$$\beta(y, B^{2}x) = \beta(y, B^{2})x + \beta(yB^{2}, x)$$

$$= \beta(y, B^{2})x + \beta(B, Byx) - \beta(B, By)x$$

$$= \beta(y, B^{2})x - \beta(B, By)x + \beta(B, Bx)y + \beta(B^{2}x, y)$$

$$= \beta(y, B^{2})x - \beta(B, By)x + \beta(B, Bx)y$$

$$+ \beta(x, B^{2}y) - \beta(x, B^{2})y. \qquad (3.13)$$

Finally, we arrive at $B^3 = 0$ by (3.12) and (3.13). Hence

$$B^2 R B^2 = B^4 R = 0,$$

$$B R B = B^2 R = 0,$$

which implies B = 0 and the proof is complete.

Corollary 3.2. (1) If R is as in Theorem 3.1, then (δ, β) is a generalized Jordan left centralizer implies that (δ, α) is a generalized Jordan derivation associate with Hochschild 2-cocycle, where $\alpha(x, y) = \beta(x, y) - x\delta(y)$.

(2) If R is as in [9, Theorem 6], then (δ, α) is a generalized Jordan derivation associate with Hochschild 2-cocycle implies that (δ, β) is a generalized Jordan left centralizer, where $\beta(x, y) = \alpha(x, y) + x\delta(y)$.

In particular, if R is a 2-torsion free non-commutative prime ring or as in Theorem 3.1 (2), then (δ, β) is a generalized Jordan left centralizer, if and only if (δ, α) is a generalized Jordan derivation associate with Hochschild 2-cocycle.

Proof. Suppose that (δ, β) is a generalized Jordan left centralizer. Let $\alpha(x, y) = \beta(x, y) - x\delta(y)$. Then $\delta(x^2) = \delta(x)x + x\delta(x) + \alpha(x, x)$. By Theorem 3.1, we have

$$\delta(yz) = \delta(y)z + \beta(y, z),$$

for all $y, z \in R$. Hence,

 $x\alpha(y, z) - \alpha(xy, z) + \alpha(x, yz) - \alpha(x, y)z = x(\beta(y, z) - \delta(yz) + \delta(y)z) = 0,$

for all $x, y, z \in R$. The proof is complete. By [9, Theorem 6], the proof of (2) is similar.

Corollary 3.3. Let R be as in Theorem 3.1 and $\delta : R \to R$ be an additive map such that $\delta(x^2) = \delta(x)x + x\tau(x)$ for all $x \in R$, where $\tau : R \to R$ is a derivation. Then (δ, τ) is a generalized derivation.

Proof. Let $\beta(x, y) = x\tau(y)$. Since τ is a derivation, it is easy to show that β satisfies (1.4). Hence (δ, β) is a generalized Jordan left centralizer. By Theorem 3.1, $\delta(xy) = \delta(x)y + x\tau(y)$ for all $x, y \in R$, that is, δ is a generalized derivation.

By [2, 4, 7, 8, 12], we have that every Jordan derivation on certain rings and operator algebras is a derivation. Hence by Corollary 3.3, we obtain the following corollary:

Corollary 3.4. If (δ, τ) is a generalized Jordan derivation on 2-torsion free semiprime rings, 2-torsion free rings, which have a commutator nonzero divisor, CSL algebras, triangular algebras or a class of reflexive algebras $\operatorname{alg} \mathcal{L}$ on a Banach space X satisfying $\lor \{L \in \mathcal{L} :$ $L_{-} < X\} = X$ or $\land \{L_{-} : L \in \mathcal{L}, L > (0)\} = (0)$, then (δ, τ) is a generalized derivation.

References

- M. Ashraf and N. Rehman, On Jordan generalized derivations in rings, Math. J. Okayama Univ. 42 (2000), 7-9.
- [2] M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
- [3] M. Bresar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 80-93.
- [4] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
- [5] I. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
- [6] J. Hou and X. Qi, Generalized Jordan derivation on nest algebras, Linear Algebra Appl. 430 (2009), 1479-1485.
- [7] F. Lu, The Jordan structure of CSL algebras, Stud. Math. 190 (2009), 283-299.
- [8] F. Lu, Jordan derivations of reflexive algebras, Integr. Equ. Oper. Theory 67 (2010), 51-56.
- [9] A. Nakajima, Note on generalized Jordan derivations associate with Hochschild 2-cocycles of rings, Turk. J. Math. 30 (2006), 403-411.
- [10] J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11 (2007), 367-370.
- [11] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32(4) (1991), 609-614.
- [12] J. Zhang and W. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), 251-255.