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Abstract 

Let δ  be an additive map from a ring R into an R-bimodule M and                    

:β MRR →×  be a biadditive map satisfying ( ) ( ) ( ) .0,,, =β−β−β zxyzyxyzx  

We call ( )βδ,  is a generalized left centralizer (respectively, a generalized          

Jordan left centralizer), if ( ) ( ) ( )yxyxxy ,β+δ=δ  for all Ryx ∈,  (respectively, 

( ) ( ) ( )xxxxx ,2 β+δ=δ  for all Rx ∈ ). In this paper, we show that every 
generalized Jordan left centralizer is a generalized left centralizer under certain 
conditions. In Corollary 3.4, we apply generalized Jordan left centralizers to 
generalized Jordan derivations on certain rings and operator algebras. 

1. Introduction 

Let δ  be an additive map from a ring R into an R-bimodule M and 
yx,  be arbitrary elements of R. δ  is called a left centralizer 

(respectively, Jordan left centralizer), if ( ) ( )yxxy δ=δ  (respectively, 

( )2xδ  ( )xxδ= ). δ  is called a generalized derivation (respectively, 
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generalized Jordan derivation), if there exists a derivation (respectively, 
Jordan derivation) MR →:τ  such that ( ) ( ) ( )yxyxxy τ+δ=δ  

(respectively, ( ) ( ) ( )xxxxx τ+δ=δ 2 ). We denote it by ( )., τδ  Generalized 
derivations and generalized Jordan derivations were introduced by  
Bresar [3] and their properties have been discussed in many papers. 

Nakajima [9] introduced a new type of generalized derivations and 
generalized Jordan derivations associate with Hochschild 2-cocycles. A 
biadditive map MRR →×α :  is called a Hochschild 2-cocycle, if 

( ) ( ) ( ) ( ) .0,,,, =α−α+α−α zyxyzxzxyzyx   (1.1) 

An additive map MR →δ :  is called a generalized derivation associate 
with Hochschild 2-cocycle, if there exists a 2-cocycle α  such that 

( ) ( ) ( ) ( ),, yxyxyxxy α+δ+δ=δ   (1.2) 

and δ  is called a generalized Jordan derivation associate with Hochschild 
2-cocycle, if 

( ) ( ) ( ) ( ).,2 xxxxxxx α+δ+δ=δ   (1.3) 

We denote it by ( )., αδ  

Motivated by Nakajima’s definitions, we will introduce a type of 
generalized left centralizers and generalized Jordan left centralizers. An 
additive map MR →δ :  is called a generalized left centralizer, if there 
exists a biadditive map MRR →×β :  satisfying 

( ) ( ) ( ) ,0,,, =β−β−β zxyzyxyzx   (1.4) 

such that 

( ) ( ) ( ),, yxyxxy β+δ=δ   (1.5) 

and δ  is called a generalized Jordan left centralizer, if there exists a 
biadditive map MRR →×β :  satisfying (1.4) such that 

( ) ( ) ( ).,2 xxxxx β+δ=δ   (1.6) 

We denote it by ( )., βδ  
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Remark. It is easy to show that ( )βδ, is a generalized left 
centralizer, if and only if ( )αδ,  is a generalized derivation associate with 
Hochschild 2-cocycle, where ( ) ( ) ( ).,, yxyxyx δ−β=α  One of the problem 
is whether generalized Jordan left centralizers and generalized Jordan 
derivations associate with Hochschild 2-cocycles are equivalent. In 
Corollary 3.2, we obtain some results. 

In recent years, there have been a number of papers on the study of 
derivations, left centralizers, and generalized derivations. Herstein        
[5, Theorem 3.1] first proved that a Jordan derivation of 2-torsion free 
prime rings is a derivation and Bresar [2, Theorem 1] extended this result 
into 2-torsion free semiprime rings. Zalar [11, Proposition 1.4] proved 
that a Jordan left centralizer of 2-torsion free semiprime rings is a left 
centralizer. In [1, 6, 10], authors showed that every generalized Jordan 
derivation on 2-torsion free rings, which have a commutator nonzero 
divisor, 2-torsion free semiprime rings and nest algebras is a generalized 
derivation. In [9, Theorem 6], Nakajima showed that every generalized 
Jordan derivation associate with Hochschild 2-cocycle is a generalized 
derivation under certain conditions. 

In this paper, we show that every generalized Jordan left centralizer 
is a generalized left centralizer under certain conditions. In Corollary 3.4, 
we easily show that a generalized Jordan derivation on 2-torsion free 
semiprime rings, 2-torsion free rings, which have a commutator nonzero 
divisor, CSL algebras, triangular algebras or a class of reflexive algebras 
algL  on a Banach space X satisfying { } XXLL =<∈ −:L  or          
 { ( )} ( )00,: =>∈− LLL L  is a generalized derivation. 

2. Lemmas  

In the following, we assume that R is a ring with the center Z  and M 
is an R-bimodule, unless otherwise stated. To obtain our results, we need 
the following lemmas: 

Lemma 2.1. Let R be a ring and  M be a 2-torsion free R-bimodule. If 
( ) MR →βδ :,  is a generalized Jordan left centralizer, then the following 

hold: 
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(1) ( ) ( ) ( ) ( ) ( ),,, xyyxxyyxyxxy β+β+δ+δ=+δ  

(2) ( ) ( ) ( ),, yxxyxxxyx β+δ=δ  

(3) ( ) ( ) ( ) ( ) ( ),,, yxzyzxyxzyzxzyxxyz β+β+δ+δ=+δ  

for all .,, Rzyx ∈  

Proof. (1) Replacing x by yx +  in (1.6), (1) is easily obtained. 

(2) Replacing y by yxxy +  in (1), we have 

( )22 yxxyxxyxyx +++δ  

 ( ) ( ) ( ) ( ) ( )xyxxyyxxyxxyxxyyxxyx ,, +β++β++δ++δ=  

 ( ) ( ) ( ) ( ) ( ) ( )xxyxyxxyyxxyxxxyx ,,2 β+β+δ+δ+δ+δ=  

( ) ( ) ( ) ( ).,,,, xyxxxyyxxxyx β+β+β+β+  

On the other hand, 

( )22 yxxyxxyxyx +++δ  

 ( ) ( ) ( ) ( ) ( ) ( ).2,,, 222 xyxxyyxxyyxxxyx δ+β+β+δ+β+δ=  

Hence, 

( ) { ( ) ( ) ( )} { ( ) ( ) ( )}22 ,,,,,,2 xyxyxxxyyxyxxxyxxyx β−β+β+β−β−β=δ  

{ ( ) ( ) ( )} ( ) .2,,, yxxxxyyxxxyx δ+β+β+β+  

Since β  satisfies (1.4), we have 

( ) ( ) ( ) ,0,,, 2 =β−β−β yxyxxxyx  

( ) ( ) ( ) ,0,,, 2 =β−β+β xyxyxxxy  

and 

( ) ( ) ( ) .,,, xyxxxyyxx β+β=β  
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As M is 2-torsion free, we obtain ( ) ( ) ( )., yxxyxxxyx β+δ=δ  

(3) Replacing x by zx +  in (2) gives (3).   

Now for ,, Ryx ∈  we set 

( ) ( ) ( ) ( ) ( ) ( ).,,,and, yxyxFyxByxxyyxF β−=δ−δ=  

Then ( )yxF ,  and ( )yxB ,  are biadditive and by Lemma 2.1 (1), we have 

( ) ( ) .0,, =+ xyByxB   (2.1) 

Lemma 2.2. Let R be a ring and  M be a 2-torsion free R-bimodule. If 
( ) MR →βδ :,  is a generalized Jordan left centralizer, then the following 

hold: 

(1) ( ) [ ] ,0,, =yxzyxB  

(2) ( ) [ ] ,0,, =yxyxB  

for all .,, Rzyx ∈  

Proof. (1) By Lemma 2.1 (3), 

(( ) ( ) ( ) ( )) ( ) ( ) ( ) ( )zxyyxzyxxyzxyyxzyxxyxyzyxyxzxy ,, β+β+δ+δ=+δ  

( ) ( ) ( ) ( )xzxyyzxyxyFyzyxxzyxyxF δ++δ+= ,,  

( ) ( ).,, zxyyxzyxxy β+β+  

On the other hand, by Lemma 2.1 (2), 

( ( ) ( ) ) ( ) ( ) ( ) ( ).,, xzxyyxzxyyyzyxxyzyxxyxzxyxyzyx β+δ+β+δ=+δ  

Thus, 

( ) ( ) ( ) ( ) ( ) ( ).,,,,,, xzxyyyzyxxzxyyxzyxxyzxyxyFzyxyxF β+β=β+β++  

(2.2) 

Since β  satisfies (1.4), we have 

( ) ( ) ( ) ( ) ( ) ( ).,,,and,,, zxyyxzxyxyxzxyyzyxxyzyxyxyzyxx β+β=ββ+β=β  
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Substituting the above relations in (2.2), we obtain ( ) +zyxyxB ,  
( ) ,0, =zxyxyB  which according to (2.1) implies 

( ) [ ] .0,, =yxzyxB  

(2) By Lemma 2.1 (2) and (3), 

(( ) ) ( ( ) ( ) )yxxyxyxyxxyxy +δ−+δ= 220  

( ) ( ) ( ) ( )xyxxyxxyxyxyxy 22 ,, β+δ+β+δ=  

( ) ( ) ( ) ( )yxxyyxyxyxxyyxyx ,, β−β−δ−δ−  

( ) [ ] { ( ) ( )}yxyxxyxyyxyxF ,,,, β−β+=   

{ ( ) ( )}.,, 2 yxxyxyx β−β+   (2.3) 

Since β  satisfies (1.4), we have 

( ) ( ) ( ) ( ) ( ) ( ) .,,,and,,, 2 yxyxyxxyxyxxyyxyxyxxyxy β=β−ββ−=β−β  

Substituting the above relations in (2.3), we obtain 

( ) [ ] ( ) [ ] ( ) [ ].,,,,,,0 yxyxByxyxyxyxF =β−=   

The following lemma can been found in [9, Lemma 5]. 

Lemma 2.3. Let R be a 2-torsion free ring and 21, GG  be additive 

groups. Let RGGTS →× 21:,  be biadditive maps. Assume that  

( ) ( ) 0,, 2121 =xxTxxS  for all .2,1, =∈ iGx ii  If there exists a nonzero 

divisor ( )21, aaT  for some ,2,1, =∈ iGa ii  then ( ) 0, 21 =xxS  for all 

.2,1, =∈ iGx ii  

The following lemmas are useful in dealing with 2-torsion free 
semiprime rings, which can been found in [11, Lemmas 1.1-1.3]. 

Lemma 2.4. Let R be a semiprime ring. If Rba ∈,  are such that 

0=axb  for all ,Rx ∈  then .0== baab  
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Lemma 2.5. Let R be a semiprime ring and RRRBA →×:,  be 

biadditive mappings. If ( ) ( ) 0,, =ω yxByxA  for all ,,, Ryx ∈ω  then 
( ) ( ) 0,, =ω vuByxA  for all .,,,, Rvuyx ∈ω  

Lemma 2.6. Let R be a semiprime ring with the center Z  and Ra ∈  
be some fixed element. If [ ] 0, =yxa  for all ,, Ryx ∈  then there exists an 

ideal U  of R such that ZU ⊂∈a holds.  

3. Generalized Jordan Left Centralizers 

The following theorem is our main result: 

Theorem 3.1. Let R be a ring and ( ) RR →βδ :,  be a generalized 

Jordan left centralizer. If R satisfies one of the following conditions, then 
( )βδ,  is a generalized left centralizer: 

(1) R has an identity 1. 

(2) R is a 2-torsion free ring and there exist Rba ∈,  such that [ ]ba,  
is a nonzero divisor. 

(3) R is a 2-torsion free semiprime ring. 

Proof. (1) By Lemma 2.1 (1), we obtain 

( ) ( ) ( ) ( ) ( ).,, xyyxxyyxyxxy β+β+δ+δ=+δ  

Taking 1=y  in the above equation, we have 

( ) ( ) ( ) ( ).,11,1 xxxx β+β+δ=δ  

Since ( ) 01, =β x  by (1.4), we have 

( ) ( ) ( ),,11 xxx β+δ=δ  

for all .Rx ∈  Hence, for any ,, Ryx ∈  

( ) ( ) ( ).,11 xyxyxy β+δ=δ  

By (1.4), ( ) ( ) ( ).,,1,1 yxyxxy β+β=β  So 

( ) ( ) ( )., yxyxxy β+δ=δ  
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(2) By Lemma 2.2 (2), ( ) [ ] 0,, =yxyxB  for all ., Ryx ∈  Since there 

exist Rba ∈,  such that [ ]ba,  is a nonzero divisor and ( )yxB ,  and 

[ ]yx,  are biadditive maps, then by Lemma 2.3, ( ) .0, =yxB  

(3) By Lemmas 2.2 (1) and 2.5, we have ( ) [ ] 0,, =vuzyxB  for all 

,,,,, Rvuzyx ∈  then by Lemma 2.4, ( ) [ ] 0,, =vuyxB  for all vuyx ,,,  

.R∈  Now, fix some Ryx ∈,  and write B instead of ( )yxB ,  to simplify 

further writing. Our goal is to prove .0=B  By Lemma 2.6, there exists 
an ideal U  of R such that .ZU ⊂∈B  Since U  is an ideal, Z∈BbbB,  

for all .Rb ∈  This gives us 

.and 2222 xByBxyBxyBxyByxB ===  

By Lemma 2.1 (1), 

( ( ) ( ) )xyByBx 222 +δ  

( ) ( ) ( ) ( )xyByBxxyByBx ,2,222 2222 β+β+δ+δ=  

( ) ( ) ( ) ( )xyByBxxyByByBx ,2,22 22222 β+β++δ+δ=  

( ) ( ) ( ) ( ) ( )xyBxByyxBBByxByBx ,,2 222 β+δ+β+δ+δ=  

( ) ( ) ( ).,2,2, 222 xyByBxxBy β+β+β+   (3.1) 

Since β  satisfies (1.4), we have for any ,, Rvu ∈  

( ) ( ) ( ),,,, 2 BvBvBvBB β=β+β   (3.2) 

( ) ( ) ( ) ( ),,,,, 2222 BuvBvuvBuvBu β+β=β=β   (3.3) 

( ) ( ) ( ) ( ) ( ) ( ) .,,,,,, 222222 uBvBvuBuvuBvuBvuvB β−β+β=β−β=β  

(3.4) 

Hence by (3.1)-(3.4), we have 
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( )yxByxB 222 +δ  

 ( ) ( ) ( ) ( ) ( ) 222 ,2,2 ByxxByBxByByxByBx β+β+δ+δ+δ=  

 ( ) ( ) ( ) ( ) .,,2,2,2 2222 xByByxBxyBxy β−β+β+β+   (3.5) 

Similar to the proof of (3.5), we also have 

( )xyBxyB 222 +δ  

( ) ( ) ( ) ( ) ( ) 222 ,2,2 BxyyBxByBxBxyBxBy β+β+δ+δ+δ=  

( ) ( ) ( ) ( ) .,,2,2,2 2222 yBxBxyByxByx β−β+β+β+   (3.6) 

Hence by (3.5) and (3.6), it follows that 

( ) ( ) ( ) ( ) ( ) ( ) .,,,, 2222 yBxyBxBxByxByByBxxBy β+β−β−β+δ=δ  

(3.7) 

On the other hand, by Lemma 2.1 (1), 

( ) ( ) ( ) ( ) ( ) ( )xyBBxyxyBBxyxyBxyBxyB ,2,22224 2222222 β+β+δ+δ=+δ=δ  

 ( ) ( ) ( ) ( ) ( ),,2,2,222 222 xyBBxyxyBBBxyBBxy β+β+β+δ+δ=  

then by (3.2) and (3.3), we have 

( ) ( ) ( ) ( ) ( ) ( ) .,2,2,2224 2222 ByxyBxBxyBBxyBBxyxyB β−β+β+δ+δ=δ  

(3.8) 

By Lemma 2.1 (1) again, we have 

( ) ( )yBxBxByBxByB +δ=δ 24  

( ) ( ) ( ) ( )xByByBxBxByByBxB ,2,222 β+β+δ+δ=  

( ) ( ) ( ) ( )BxByByBxBxByyBByBxxB ,2,2 β+β++δ++δ=  

( ) ( ) ( ) ( )ByxBByBxBxyByBx ,,2 β+β+δ+δ=  

( ) ( ) ( ) ( )BxyBBxByBxyBxBy ,,2 β+β+δ+δ+  
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( ) ( ).,2,2 BxByByBx β+β+  (3.9) 

Since for any ,, Rvu ∈  

( ) ( ) ( ) ( ) ( ) ( )vBuuvBvuBBvuvuBvBu ,,,,,, β−β+β−β=β+β  

 ( ) ( ) ( ).,2,, vBuuvBBvu β−β+β=   (3.10) 

So by (3.9) and (3.10), we obtain 

( ) ( ) ( ) ( )BxyBxByyBxxByB δ+δ+δ=δ 24 22  

 ( ) ( ) ( ).,2,, 22 BxyBxByyBx β+β+β+   (3.11) 

Hence by (3.7), (3.8), and (3.11), we have 

( ) ( ) ( ) 222 2,22 yBxByxBxy δ−β−δ  

( ) ( ) ( )xByxByBxBy 22 ,,, β−β+β=  

( ) ( ) ( ).,,, 22 yBxyBxyBxB β−β+β−   (3.12) 

Since β  satisfies (1.4), it follows that 

( ) ( ) ( )xyBxByxBy ,,, 222 β+β=β  

   ( ) ( ) ( )xByBByxBxBy ,,, 2 β−β+β=  

 ( ) ( ) ( ) ( )yxByBxBxByBxBy ,,,, 22 β+β+β−β=  

 ( ) ( ) ( )yBxBxByBxBy ,,, 2 β+β−β=   

 ( ) ( ) .,, 22 yBxyBx β−β+   (3.13) 

Finally, we arrive at 03 =B  by (3.12) and (3.13). Hence 

,0422 == RBRBB  

,02 == RBBRB  

which implies 0=B  and the proof is complete.   
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Corollary 3.2. (1) If R is as in Theorem 3.1, then ( )βδ,  is a 

generalized Jordan left centralizer implies that ( )αδ,  is a generalized 

Jordan derivation associate with Hochschild 2-cocycle, where ( ) =α yx,  

( ) ( )., yxyx δ−β  

(2) If R is as in [9, Theorem 6], then ( )αδ,  is a generalized Jordan 

derivation associate with Hochschild 2-cocycle implies that ( )βδ,  is a 

generalized Jordan left centralizer, where ( ) ( ) ( ).,, yxyxyx δ+α=β  

In particular, if R is a 2-torsion free non-commutative prime ring or as 
in Theorem 3.1 (2), then ( )βδ,  is a generalized Jordan left centralizer, if 

and only if ( )αδ,  is a generalized Jordan derivation associate with 

Hochschild 2-cocycle. 

Proof. Suppose that ( )βδ,  is a generalized Jordan left centralizer. 

Let ( ) ( ) ( ).,, yxyxyx δ−β=α  Then ( ) ( ) ( ) ( ).,2 xxxxxxx α+δ+δ=δ  By 

Theorem 3.1, we have 

( ) ( ) ( ),, zyzyyz β+δ=δ  

for all ., Rzy ∈  Hence, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ,0,,,,, =δ+δ−β=α−α+α−α zyyzzyxzyxyzxzxyzyx  

for all .,, Rzyx ∈  The proof is complete. By [9, Theorem 6], the proof of 

(2) is similar.   

Corollary 3.3. Let R be as in Theorem 3.1 and RR →δ :  be an 

additive map such that ( ) ( ) ( )xxxxx τ+δ=δ 2  for all ,Rx ∈  where 

RR →:τ  is a derivation. Then ( )τ,δ  is a generalized derivation. 

Proof. Let ( ) ( )., yxyx τ=β  Since τ  is a derivation, it is easy to show 

that β  satisfies (1.4). Hence ( )βδ,  is a generalized Jordan left 

centralizer. By Theorem 3.1, ( ) ( ) ( )yxyxxy τ+δ=δ  for all ,, Ryx ∈  that 

is, δ  is a generalized derivation.   
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By [2, 4, 7, 8, 12], we have that every Jordan derivation on certain 
rings and operator algebras is a derivation. Hence by Corollary 3.3, we 
obtain the following corollary: 

Corollary 3.4. If ( )τ,δ  is a generalized Jordan derivation on            
2-torsion free semiprime rings, 2-torsion free rings, which have a 
commutator nonzero divisor, CSL algebras, triangular algebras or a class 
of reflexive algebras algL  on a Banach space X satisfying { :L∈L  

} XXL =<−  or { ( )} ( ),00,: =>∈− LLL L  then ( )τ,δ  is a 

generalized derivation. 
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